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spheric lifetimes, will need to take into account the rate at which

they may have been supplied to the atmosphere. Schemes analogous

to that presented for CO_, will have to be explored in order to assess

the absolute contribution of any potential greenhouse gas on early

Mars.
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THE MARTIAN VALLEY NETWORKS: ORIGIN BY

NIVEO-FLUVIAL PROCESSES. J.W. Rice Jr., Department

of Geography, Arizona State University, Tempe AZ 85287, USA.

The valley networks may hold the key to unlocking the

: paleoclimatic history of Mars. These enigmatic ]andforms may be

regarded as the martian equivalent of the Rosetta Stone. Therefore,

a more thorough understanding of their origin and evolution is

required. However, there is still no consensus anaong investigators

regarding the formation (runoff vs. sapping) of these features.

Recent climatic modeling [lr precludes warm (0°C) globally

averaged surface temperatures prior to 2 b.y. when solar luminosity

was 25-30% less th an prt, sent levels. This paper advocates snowmeh

as the dominant process responsible for the fornaation of the den-

drilic valley networks. Evidence for martian snowfall and_ subse-

quent melt has been discussed in previous studies.It_has been

suggested [21 that Mars has undergone periods of very high obliq-

uities, up to 45% thus allowing snow accumulations, several terls of

meters thick, at low latitudes as a result of sublimation from the

poles. Clow investigated the conditions under which sn_ow could

have mehed by solar radiation by using an optical-theaZmal model

developed for du sty snowpacks [3]. It was found that_die low thermal

conductivity of snow and its partial transparency to solar radiation

can result in subsurface melting despite surface temperatures ,,veil

below freezing. Melting and subsequent runoff can occur at atmo-

spheric pressures as low as 30-100 mbar [3]. Can" showed that if

streams 2 m deep or larger can be initiated and su stained, then flows

up to a few hundred kilometers long can be established, even under

present-day climatic conditions [4],Therefore, based on the above-

mentioned work, it seems logical to the author that snowfall and

subsequent snowmelt has many advantages to other explanations

for the formation of the valley networks.

It has been argued that the valley networks were formed prima-

rily by groundwaterseepage. This is based on the measurement of

junction angles between intersecting tributaries and on morphologic

characteristics that appear to suggest headward extension through

basal sapping [5]. The evidence for sapping is insome cases con-

vincing (i.e., Nirgal Vallis). but it does not explain many of the

dendritic valley systems, e.g., those located in the Margaritifer

Sinus region.

"-Some problems with the sapping model will be discussed below.

FirSt, the measurement of junction an#es between individual in-

terse_zling tributaries of the valley networks does not provide evi-

dence-\o refute the view that the networks were formed by rainfall/

snowmelt-fed erosion. Stream junction angles are controlled by

slope, stfijcture, lithology, and basin development stage, not pre-

cipitation-J6]. Sapping requires that zones of low hydraulic head

somehow be established to support the gradients needed to allow

groundwater flow, and that zones of high hydraulic head be re-

charged, presumably by precipitation. Additionally, some of the

valley networl(s whose channels originate on crater-rim crests indi-

cate that the loca[water table must have intersected the surface high

on the crater wall _ sapping was involved [3]. This would mean that

the crater was oncefilled with water, but there is no evidence, such

as inflowing channels, to support this condition. It should also be

noted that all the valley networks have been modified by mass

wasting processes such as gelifluction and thermal erosion.

In order to more full_y understand niveo-fluvial systems on Mars

one should study terrest_al periglacial regions such as the North-

west Territories in the Cafi_dian High Arctic. It is proposed that the

following geomorphic processes and resulting landfornas of

snowmelt-fed rivers be used to explain the de ndritic valley networks
on Mars.

The Mecham River near Resolute, Northwest Territories, pro-

vides an excellent example of s_ream action and valley development

in the periglacial realm. The are a_isunderlain by continuous perma-

frost and mean monthly air temperatures are below zero for 9-

10 months a year. The Mecham Riyer has 80-90% of its annual flow

concentrated in a 10-day period. Tl_s is typical for periglacial rivers

in the High Arctic. During dais brief period of concentrated flow

extensive movement of bedload occurs, sometimes with peak ve-

locities up to 4 m/s, causing the whole bed to be in motion [7]. This

pattern of intense activity has far gre_iter erosive and transporting

potential than a regime in which rivet: flow is evenly distributed

throughout the year. The dominance of _dload movement in Arctic

streams helps explain the distinctive flal-bottomed forna of many

periglacial stream valleys [8]. Thermal el:gsion and the subsequent

collapse of river banks provides material for bedload transport and

deposition downstream. This process also _,ids in the development

of the broad flat-floored valleys. The pernm fl:ost also favors the flat-

floored valley profiles because it provides/l near-surface limit to

downward percolation of water, thereby promoting runoff [9]. An-

other interesting feature of these periglacial rivers is that they lack

a pronounced channel on their floors. This holds true for valleys

eroded into either bedrock or unconsolidated d_bris.

Other work [10] indicates that fluvial proces_s have often been

underestimated in periglacial regions. Budei illu si_rates this point in

Spitsbergen, where he pointed out that ground ice breaks apart the

rocks and prepares them for fluvial action. Periglacial rivers do not

need to carry out new erosive action but need only n_elt the eisrinde

and transport the shattered debris. The eisrinde is cdla_posed of the

upper frozen and highly shattered layer of the perm:afrost. Rivers

operating under this regime can deepen their beds rapidly; down-

cutting rates on the order of 1-3 nv' 1000 yr over the lhst 10,000 yr

have been estimated for Spitsbergen [ 10].
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Global meantemperatures near 273 K on early Mars are difficult

to explain in the context of standard solar evolution models. Even

assuming maximum CO, greenhouse warming, the required flux is

- 15% too low.[ 1]. Here we consider two astrophysical models that

could increase the flux by th is amount. The first model is a nonstand-

ard solar model in which the early Sun had a mass somewhat greater

than today's mass (1.02-1.06 Mo). The second model is based on

The most promising nonclimatic evidence for main sequence
L

mass loss from the early Sun is the direct observation of similar mass

loss from young main-sequence G stars. Detection of stellar mass

loss f.rom late dwarfs ai the predicted rate (less than-I 0 -I° M o yr -I)

by optical techniques is generally not possible. However, in one

unique ease where it could be measured, an outflow 1000x that of

the present Sun was found in a K2V dwarf [11]. Recently, huge

winds have been reported from several M dwarfs [12]. This tech-

nique involves detections over a wide range of radio and nlillimeter

wavelengths and the fact that free-free emission from an optically

thick wind has a characteristic spectrum in which the flux is propor-

tional to the 2/3 power of the frequency. As a first step in extending

this technique to solar-type stars we have recently used the VLA to

obtain the radio emission at 2 and 6 cm in four nearby young G-type

stars.

In the second model-(ecliptic focusing) we assume standard solar

evolution. Young G starsare often observed to be heavily spotted

(10-50%). In contrast to mature G stars like the Sun, which typically

have only a maximunl covef'age of-0.1%, the net effect of star spots

on young G stars is to reduce!.he radiated flux at the location of the

spot. Since the total stellar ln_minosity is determined by nuclear

a standard evolutionary solar model, but the ecliptic flux is in- reactions in the core, thefluxnau.stincreaseinregionswithoutspots.

creased due to focusing by an (expected) heavily spotted early Sun._ -Such variations in flux are observed on short (days) and long (years)

The relation between_stellar mass M and luminosity L for stars timescales [ 13]. These observatir0s measure the anisotropy in the

near 1 M o is L- M 4.7s 12]. If the Su n's original mass were larger than

at present, the early planetaL'y flux would be further increase,:.] due

to migration of orbits. Isotropic mass loss does not produce a_torque

on a planet and so angular momentum is conserved. Conse_luentiy,

semimajor axes increase inversely with mass loss and the flux is

proportional to M 6.75. To increase the flux at Mars by I5% requires

that the Sun's mass be _>! .02 Mo. On the otherhand, the flu x cannot

be so large (1.1 × that of the flu x at I AU today) that Earth would h ave

lost its water [3]. This imposes an upper mas_ limit of i.06 Mo.

Nonclimatic evidence for mass loss of this magnitude might be

found in the ion implantation record of meteorites and Moon rocks.

Such evidence does exist, but is inconclusive due to uncertainties in

exposure times and dating [4.51. The dynamical record of adiabatic
mass loss is alsoinconclusive.The a_liabatic invariance of the action

variables implies that the eccentricities and inclinations of plan-

etary orbits remain constant asJhe semimajor axes increase. The

dynamical drag of the wind would have no effect on planets, but

would cau sea net inward migration ofbodies of sizes less th an about

1 km [6]. Whether the c ralering record is consistent with this

dynamical consequence is unclear. Mass loss could also be an

additional process contributing to bringing organics into the inner

solar system.

A mass loss of 0_.1 M o h as been suggested as an explanation for

the depletion of Li in the Sun by 2 orders of magnitude over

primordial values [7]. However, this explanation has been reconsid-

ered by [8]. who find that mass loss cannot explain the depletion of

distribution of spots. A more significant effect would be the average

increase in the equatorial flux if the? time-averaged location of the

spotted regions was nearer to the stellar poles than to the equator.

This is not the case in today's Sun, but is observed to occur in young

stars such as the G2V star SV Camelopardalis, in which there is a

-10% coverage, localized in latitude and longitude, Ioward one of

the poles.

We have investigated a simple model in.which polar cap block-

ing focuses the stellar flux in the equatorial plane. The equatorial

flu x can be enhanced a maximum of a factor of 2 over the uncapped

case. For a time-averaged polar coverage of 10% the equatorial flux

enhancement factor is 1.17. Refinements in this model and a review

of the relevant observational data will be presented.
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